Clicker Questions for
February 13
(define reverse-a (lambda (lat acc) (cond

```
[(null? lat) acc]
[else (reverse-a (cdr lat) (cons (car lat) acc)))])))
```

How many primitive ops (car cdr or cons) does it take this to reverse a list of length n ?
A. 2
B. $\mathrm{O}(1)$
C. $\mathrm{O}(\mathrm{n})$
D. $O\left(n^{2}\right)$
E. $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Answer C: O(n)

(define reverse (lambda (lat) (cond

```
[(null? lat) acc]
[else (append (reverse (cdr lat)) (list (car lat)))])))
```

How many primitive ops (car cdr or cons) does it take this to reverse a list of length n ?
A. 2
B. $\mathrm{O}(1)$
C. $\mathrm{O}(\mathrm{n})$
D. $O\left(n^{2}\right)$
E. $O\left(n^{3}\right)$

Answer: It depends on how append is implemented. If it is just (define append (lambda (L1 L2)
(cond

```
[(null? L1) L2]
[else (cons (car L1) (append (cdr L1) L2))))
```

then the answer is $\mathrm{D}: \mathrm{O}\left(\mathrm{n}^{2}\right)$.
If the lists are doubly-linked so you can append L1 to L2 by making the tail of L1 point to L2 then append might be constant-time, so reverse would still be $\mathrm{O}(\mathrm{n})$.

